Correction de l'exercice Hardy-Weinberg sur la drépanocytose

Exercice 2:

Calcul des fréquences alléliques

Soient p la fréquence de l'allèle HbA et q la fréquence de l'allèle HbS

Afrique équatoriale	USA
p = 2 x 9365 + 2293 2 x 12387	$p = \frac{2 \times 11272 + 1109}{2 \times 12387}$
p = 0,877	p = 0,955
p+q = 1 donc q = 0,123	p+q = 1 donc q = 0,045

Calcul des fréquences génotypiques réellement observées

Afrique équatoriale	USA
(HbA//HbA) → 9365/12387 = 0,756 soit 75,6 %	(HbA//HbA) → 11272/12387 = 0, 910 soit 91 %
(HbA//HbS) → 2993/12387 = 0,242 soit 24,2 %	(HbA//HbS) → 1109/12387 = 0,0895 soit 8,95 %
(HbS//HbS) → 29/12387 = 0,002 soit 0,2 %	(HbS//HbS) → 6/12387 = 0,0005 soit 0,05 %
p ² + 2pq + q ² = 1	p ² + 2pq + q ² = 1

Calcul des fréquences génotypiques théoriques

Afrique équatoriale	USA
(HbA//HbA) → p ² = 0,769 soit 76,9 %	(HbA//HbA) → p ² = 0,912 soit 91,2 %
(HbA//HbS) → 2pq = 0,216 soit 21,6 %	(HbA//HbS) → 2pq = 0,086 soit 8,6 %
(HbS//HbS) → q ² = 0,015 soit 1,5 %	(HbS//HbS) → q ² = 0,002 soit 0,2 %
p ² + 2pq + q ² = 1	p ² + 2pq + q ² = 1

Lire pour f(p) Afrique = 0,849 soit f(q) = 0,151

Les fréquences génotypiques théoriques sont plus proches des fréquences génotypiques réelles dans la population vivant aux Etats-Unis que dans la population vivant en Afrique équatoriale : une des conditions d'application de la loi de Hardy-Weinberg n'est peut-être pas remplie dans cette dernière population : dérive génétique ? Sélection naturelle ? Croisements non aléatoires ?...

Interprétation en utilisant les documents 2 et 3

Le document 1 nous apprend que les hétérozygotes, bien qu'en bonne santé, ont un phénotype particulier, le « trait drépanocytaire » parce que l'allèle HbS s'exprime : ils produisent 40 à 45 % d'hémoglobine falciforme.

Le document 2 nous apprend qu'un lien a été établi entre la possession d'un allèle HbS et le paludisme. Les hétérozygotes sont avantagés face au paludisme, ce qui explique les écarts constatés entre les fréquences génotypiques théoriques et réelles.

Conclusion

La loi de Hardy-Weinberg s'applique moins bien en Afrique équatoriale à cause de la sélection naturelle des porteurs d'allèles HbS qui ont le trait drépanocytaire. Dans cette région, plus fortement touchée par le paludisme que les Etats-Unis d'après la carte, les hétérozygotes ont plus de chances de survivre et donc de transmettre et maintenir l'allèle HbS.