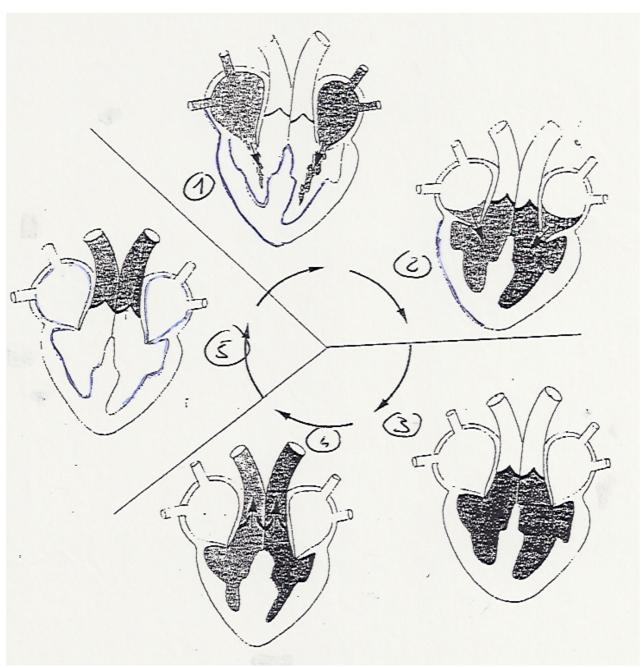
TD: Le coeur et La circulation sanguine – L1 Physiologie

Objectifs : savoir expliquer le fonctionnement du coeur et son rôle dans la circulation sanguine.

I – Rappels sur les constituants du sang et l'organisation du coeur


 Interprétez, en définissant les termes, les résultats d'hématologie de l'analyse sanguine cidessous.

IEMOGRAMME							
RUBY Cell-Dyn Abbott ^o A partir of	lu 20/10/2	010	. (Ted	chnique antérie	eure: LH 500 Beckman	Coulter)	
lumération globulaire						111241015	
HEMATIES	To State Of the Land		5.74	Millions/mm3	(VR:4.50 à 5.50)	16/01/2008	: 5.76
Hémoglobine			16.3	g/100m1	(VR:13.0 à 18.0)		16.9
Hématocrite	***************************************		49.7	%	(VR:40.0 à 54.0)		49.9
VGM	***************************************		86.6	μ3	(VR:82.0 à 98.0)		86.6
TGMH			28.4	pcg	(VR:27.0 à 32.0)		29.3
CGMH			32.8	g/100ml	(VR:30.0 à 36.0)		33.9
LEUCOCYTES			7 700	/mm3	(VR:4 000 à 10 000)	16/01/2008	: 8 500
ormule leucocytaire							
Poly. Neutrophiles	54.7	%	4 212	/mm3	(VR:2 000 à 7 500)		5 075
Poly. Eosinophiles	5.1	%	393	/mm3	(VR: < à 400)		204
Poly. Basophiles	0.7	%	54	/mm3	(VR: < à 150)		17
Lymphocytes	29.1	%	2 241	/mm3	(VR:1 500 à 4 000)		2 338
Monocytes	10.4	%	801	/mm3	(VR: < à 1 000)		867

Faites un schéma légendé du coeur.
 Sont attendus : l'orientation du coeur, le sens de circulation du sang, le nom des différentes parties, des différents vaisseaux ainsi que le nom des valves cardiaques

II – La révolution cardiaque

- comment expliquez-vous le terme « révolution cardiaque » ?
- Définissez les mots suivants : Systole et diastole.
- En vous aidant du schéma ci-après précisez votre définition d'une révolution cardiaque.
 N'hésitez pas à détailler chaque étape du schéma.

La révolution cardiaque

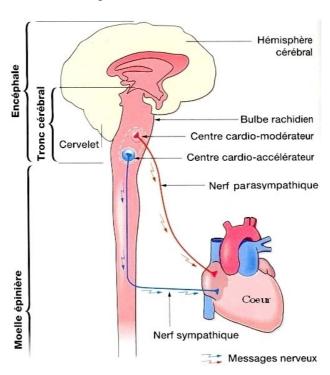
Mise en pratique:

	Groupe	Volume d'éjection systolique (VES)	Fréquence cardiaque (FC)	Débit cardiaque (Qc)
repos	Non entrainés	0,07	72	5
	Entrainés	0,1	50	5
Exercice intense	Non entrainés	0,11	200	22
	Entrainés	0,18	190	34,2

- Définissez et donnez les unités de la FC, du VES et du Qc
- Comment calcule-t-on le débit cardiaque ?
- Commentez les résultats et concluez sur le rôle de l'entrainement sur le coeur.

III – L'automatisme cardiaque

Observations:


Ringer1882-1883 : Un cœur isolé de grenouille, mis dans un milieu salin contenant des ions Ca**2+**, continue de battre pendant plusieurs heures

- •Au cours du développement embryonnaire, le cœur commence de battre avant la mise en place de son innervation.
 - Que pouvez-vous déduire de ces observations ?

Structures à l'origine de l'automatisme cardiaque :

- Représentez sur le schéma du coeur ces structures et décrire leur mode de fonctionnement.

Le contrôle nerveux de l'activité cardiaque

Doc 1: la double innervation cardiaque

Activité	FC sans blocage	FC avec blocage	FC avec blocage	FC avec blocage
		sympathique	parasympathique	des 2 nerfs
Repos	49	44	84	90
Effort moyen	77	66	94	90

Doc 2 : Fréquence cardiaque (FC en bat/min) en fonction de l'effort fourni et du blocage des nerfs sympathique et parasynpathique.

- A partir de l'étude de ces deux documents, expliquez le contrôle nerveux de l'activité cardiaques.
- Comment varie l'activité des nerfs parasympathique et sympathique durant un effort physique?

IV – Les vaisseaux sanguins et la circulation sanguine

 Citez les vaisseaux sanguins qui composent le système vasculaire puis donnez leurs caractéristiques structurales et fonctionnelles principales. Pour répondre, remplissez le tableau :

Vaisseaux sanguins	Structures	Fonctions
Artères		
Artérioles		
Capillaires		
Veinules		
Veines		

Les vaisseaux sanguins et leurs caractéristiques

- Faites un schéma des circulations sanguines. (le coeur devra y figurer)
- Donnez les principales caractéristiques des deux circulations sanguines