BACCALAUREAT BLANC

Session 2017

SCIENCES DE LA VIE ET DE LA TERRE

Série S

Durée de l'épreuve : 3 heures 30

ENSEIGNEMENT DE SPECIALITE

L'usage de la calculatrice n'est pas autorisé. Ce sujet comporte 4 pages

PARTIE I (10 points)

Le brassage génétique et sa contribution à la diversité génétique

Exposez, en vous appuyant sur des schémas, comment des anomalies dans le déroulement de la méiose chez la mère permettent d'aboutir, après la fécondation, au caryotype : 22 paires de chromosomes homologues et XXY.

Votre exposé devra être structuré par une introduction, un développement, une conclusion. Pour simplifier les schémas, on limitera la représentation des autosomes à une seule paire de chromosomes.

PARTIE II – Exercice 1 (4 points)

La caractérisation du domaine continental

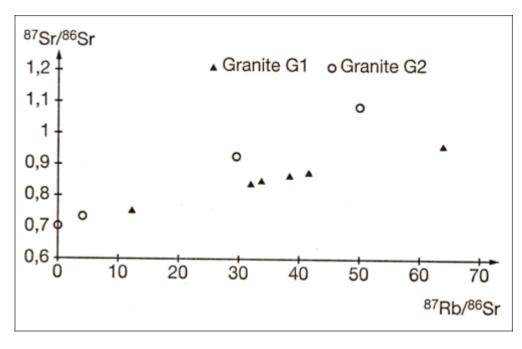
On se propose d'effectuer une datation relative de deux granites à partir de mesures obtenues par la méthode rubidium-strontium.

A partir des informations extraites du document :

- Expliquez comment évoluent au cours du temps, dans une roche, les rapports isotopiques ⁸⁷Rb/⁸⁶Sr et ⁸⁷Sr/⁸⁶Sr ;
- Proposez une datation relative des granites Gl et G2 en justifiant la réponse. Aucun calcul d'âge absolu n'est attendu.

Document : datation par la méthode rubidium-strontium

Principe de la mesure

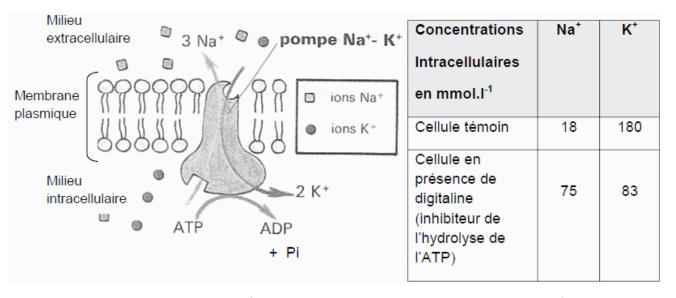

La méthode mise en œuvre est fondée sur la décroissance radioactive du ⁸⁷Rb, un isotope instable du rubidium qui se désintègre spontanément en ⁸⁷Sr, un isotope stable du strontium. On mesure dans la roche les quantités de ⁸⁷Rb et ⁸⁷Sr ainsi que de ⁸⁶Sr, un isotope stable dont la quantité est supposée constante au cours du temps. Les valeurs des rapports ⁸⁷Rb/⁸⁶Sr et ⁸⁷Sr/⁸⁶Sr fournies par ces mesures sont reportées sur un graphique. La datation s'appuie alors

sur la construction d'une droite isochrone, dont l'équation peut s'écrire sous la forme :

$$y = Ax-B$$
 où $A = \lambda t$

Résultats

Des mesures isotopiques effectuées sur des échantillons et des minéraux des deux granites G1 et G2 ont permis de construire le graphique ci-dessous:

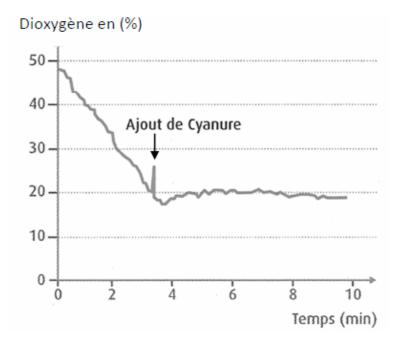

PARTIE II – Exercice 2 (6 points) – Spécialistes

Energie et cellules vivantes

Le cytoplasme des cellules est plus riche en ions K⁺ et plus pauvre en ions Na⁺ que le milieu extracellulaire. Ces différences de concentrations participent au potentiel de repos membranaire de -70 mV de la cellule nerveuse.

À partir de l'exploitation des documents et de l'utilisation des connaissances, expliquer les mécanismes énergétiques qui assurent le maintien des différences de concentrations ioniques pour une cellule nerveuse.

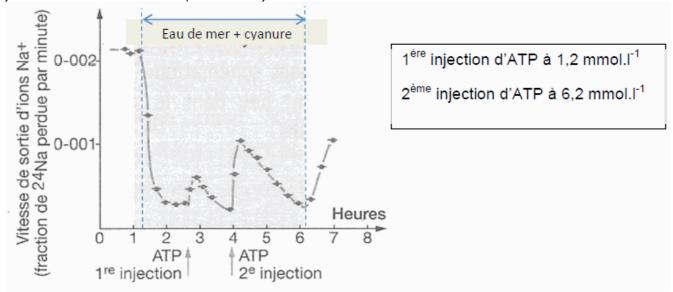
<u>Document 1</u> : Fonctionnement de la pompe sodium-potassium (représentation schématique) et concentrations intracellulaires en ions



La pompe permet d'échanger les ions sodium (Na^+) issus du milieu intracellulaire avec les ions potassium (K^+) issus du milieu extracellulaire dans un rapport précis (3 Na^+ / 2 K^+).

D'après biologie TD – Collection Tavernier – 1989

$\underline{\text{Document 2}}: \textbf{Effets du cyanure sur la consommation en dioxyg} \\ \hat{\textbf{e}} \textbf{ne urone}$


On suit l'évolution de la teneur en dioxygène du milieu de culture dans lequel sont placés des neurones, avant et après ajout de cyanure. Ce dernier traverse facilement les membranes cellulaires.

Document 3 : Effets du cyanure et de l'ATP sur des neurones de calmar

Caldwell et Keynes ont placé des neurones de calmar contenant des ions ²⁴Na⁺ radioactifs dans de l'eau de mer. Ils ont mesuré la vitesse de sortie de ces ions dans trois conditions différentes :

- eau de mer,
- eau de mer additionnée de cyanure,
- injection d'ATP dans le neurone en présence de cyanure

De l'ATP ajouté à l'eau de mer mais non injecté dans le neurone n'a aucun effet.

D'après http://www.didier-pol.net/6SET696.html

<u>Document 4</u> : Mesures de concentrations intracellulaires en ions Na+ et K+ pour un neurone dans différents milieux de culture.

Composition du milieu	Na⁺	K [†]
	en mmol.l ⁻¹	en mmol.l ⁻¹
sans glucose	77	85
avec glucose	15	150
avec glucose	64	93
+ inhibiteur de la glycolyse		
avec pyruvate	18	148
avec pyruvate	23	117
+ inhibiteur de la glycolyse		

D'après http://ddata.over-blog.com/

Rappel : le pyruvate est le produit final de la glycolyse